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Abstract

This atlas documents the climate characteristics of version 1 of the NASA Seasonal-

to-Interannual Prediction Project (NSIPP) Atmospheric General Circulation Model

(AGCM). The AGCM includes an interactive land model (the Mosaic scheme), and
is part of the NSIPP coupled atmosphere-land-ocean model. The results presented here

are based on a 20-year (December 1979-November 1999) "AMIP-style" integration of

the AGCM in which the monthly-mean sea-surface temperature and sea ice are specified
from observations.

The climate characteristics of the AGCM are compared with the National Centers

for Environmental Prediction (NCEP) and the European Center for Medium-Range

Weather Foreacsting (ECMWF) reanalyses. Other verification data include Special

Sensor Microwave/Imager (SSM/I) total precipitable water, the Xie-Arkin estimates of
precipitation, and Earth Radiation Budget Experiment (ERBE) measurements of short

and long wave radiation.

The atlas is organized by season. The basic quantities include seasonal mean global

maps and zonal and vertical averages of circulation, variance/covariance statistics, and

selected physics quantities.
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1 Introduction

The mission of the NASA Seasonal-to-Interannual Prediction Project (NSIPP) is to use

remotely-sensed observations to enhance the predictability of E1 Nino/Southern Oscillation

(ENSO) and other major seasonal-to-interannual signals and their global teleconnections.

Fullfilling this mission requires state-of-the-art general circulation models of the coupled

ocean-atmosphere-land system that can be used to assimilate observations and to demon-

strate the utility of those observations through experimental prediction.

This report presents the climate characteristics of version 1 of the NSIPP Atmospheric Gen-

eral Circulation Model (the NSIPP 1 AGCM). This model, which is the atmosphere/land

component of the full coupled atmosphere-land-ocean model, is currently being used in a

wide range of atmospheric, coupled ocean/atmosphere and land/atmosphere simulation and

predictability studies. Subsequent reports will summarize the predictability characteristics

and interannual variability of this version of the AGCM.

The NSIPP AGCM was developed at Goddard. NSIPP 1 is a production version of the

development cycle Aries l_l/Patch 4. We note that the Goddard Earth Observing System

(GEOS) model currently being used by the Data Assimilation Office (DAO) stems from

the same development path. The GEOS model was, however, tailored for atmospheric data

assimilation, while the NSIPP model was developed for climate simulation and prediction.

This difference in application manifests itself largely in the tailoring and tuning of the

physical parameterizations to ensure that certain key aspects of the atmosphere/land system

are faithfully reproduced by the model. For example, in the development of the NSIPP

AGCM, much attention has been devoted to the simulation of wind stresses over the tropical

Pacific Ocean in order to obtain the proper atmosphere-ocean coupling when run in a

coupled mode. Also, the middle latitude atmospheric stationary waves must be sufficiently

unbiased in order to obtain the proper extratropical ENSO response and its variability

(e.g., Schubert et al. 2000). In fact, it is these two aspects of the model climatology that

motivated the recent model development, leading to Patch 4.

Although one may regard most changes in Patch 4 as fairly minor, they led to a much

improved simulation over earlier versions. These changes include an increase in vertical

resolution from 22 to 34 levels, with all new levels added near the surface; a modified

version of the convection parameterization, with a more complete liquid water budget in

updrafts; a modified version of the turbulence scheme, together with the elimination of dry

convective adjustment; the use of filtered topography; and some minor modifications to the

cloud disgnostic scheme. More details are presented in the next section.

The results presented are from a 20-year (December 1979-November 1999) "AMIP-style"

integration of the NSIPP 1 AGCM. Here AMIP indicates that the model was run with

monthly mean sea surface temperature and sea ice specified from observations following the

experimental design of the Atmospheric Model Intercomparison Project (Gates 1992). The

results are compared with the reanalysis performed by the National Centers for Environ-

mental Prediction and the National Center for Atmospheric Research (the NCEP/NCAR

Reanalysis, Kalnay et al., 1995) for the same time period. Other verification data include

the European Center for Medium-Range Weather Foreacsting (ECMWF) reanalysis (Gibson

et al., 1996), Special Sensor Microwave/Imager (SSM/I) total precipitable water, Xie arts



Arkin (1997)estimatesof precipitation,and Earth RadiationBudgetExperiment(ERBE)
measurementsof shortwaveandlongwaveradiation.

The atlas is organizedby season.The basicquantitiesincludeseasonalmeanglobalmaps
and zonaland vertical averagesof circulation, variance/covariancestatistics,and selected
physicsquantities.

Section2 describesthe NSIPP 1 AGCM. Sections3 and 4 describethe model integration
and validation data, respectively.Section5 givesan overviewof the organizationof the
atlas.The resultsarediscussedin Sections6-8.

2 Description of the model

The AGCM is the atmospheric component of the NSIPP coupled prediction system. It uses

a finite-difference dynamical core based on a C-grid in the horizontal and a standard sigma

coordinate in the vertical. A detailed description of this core is given in Suarez and Takacs

(1995).

Finite differences are second-order accurate, except for advection by the rotational part of

the flow, which is done at fourth order. The momentum equations use a fourth-order version

of the enstrophy conserving scheme of Sadourney (1975). The horizontal advection schemes

for potential temperature and moisture are also fourth-order and conserve the quantity and

its square (Takacs and Suarez, 1996).

The parameterizations of solar and infrared radiative heating rates are described in Chou

and Suarez (1999) and Chou and Suarez (1994). The solar parameterization includes ab-

sorption due to 03, CO2, water vapor, 02, and clouds, as well as gaseous and aerosol

scattering. The solar spectrum is divided into eight Visible-UV bands and three near-IR

bands. A k-distribution method is used within each band. The eight VIS-UV bands use a

single k-interval, while the IR bands use ten intervals each. Effects of multiple scattering by

clouds and aerosols are treated using the $-Eddington approximation for the direct beam

and Sagan-Pollock for diffuse radiation. The infrared parameterization includes absorp-

tion by water vapor, CO2, 03, methane, N20, CFC-11, CFC-12, and CFC-22, within eight

spectral bands, but in the results prsented only water vapor, CO2, and 03 are included.

From the moist physics parameterizatious, the GCM estimates a cloud fraction at each

level. For the solar radiation calculation, the GCM levels are then grouped into three

regions which axe identified with high (a < 0.56) middle (0.56 < a < 0.77) and low (a >

0.77) clouds. Within each of these regions, clouds are assumed to be maximally overlapped

and the cloud fractions are scaled using a scheme that depends on solar zenith angle and

optical thickness. This leaves us with a single cloud fraction in each of the three regions.

The overlapping between these region is treated "exactly" by assuming random overlapping

and combining the results of full transfer calculations for the eight possible cases.

Turbulence throughout the atmospheric column is modeled using the Louis et al.(1982)

scheme. This is a local "K" scheme with Richardson number-dependent viscosity and

diffusivity. In practice, we found that the scheme contributed to excessive annual mean



stressesover the equatorialpacific, as well as to unrealistic seasonal variation of these

stresses. These deficiencies were alleviated by using a smaller than usual value for the eddy-

mixing length scale A0. We use A0--=20 meters, compared to typical values of 80 to 160 meters

in other implementations of the scheme. We also truncate mixing in the stable Ri regime, so

that for Ri>3.0 vertical viscosity and diffusivity are exactly zero. This eliminates sporadic

patches of significant momentum mixing in the middle troposphere, which we believe have
an adverse effect on the simulation of surface wind stresses. These modifications to the

standard implementation of the Louis scheme do not have noticeable negative impacts on

other aspects of the model climate. We also note here that dry convective adjustment has
been eliminated from the current version of the model.

The model uses the gravity-wave drag parameterization described by Zhou et al. (1996).

The Zhou scheme incorporates only orographically forced gravity waves. Directional anisotropy

of the orographic forcing is ignored. The scheme contains two important "tunable" param-

eters, the effective wavenumber krnw for the waves, and a maximum surface amplitude for

the waves hrnax. These must be determined empirically. Currently we use krnw = 2.5 x 10 -5

m -1 and hmax = 400 m. The surface amplitude of waves is the lower of hmax and a

local gridbox RMS topographic deviation derived from the GTOPO30 thirty arcsecond

topographic data set (http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html). The

GTOPO30 data have been binned by averaging the heights in 5 x 5 squares to produce a

2.5' dataset. It is with these data that the RMS amplitudes are computed.

In addition to the Zhou scheme, the model incorporates enhanced Rayleigh damping above

a=0.05. This damping is formulated as

('0.05- o (0. rJ)0= "y0\ 0.05

where U is the model horizontal wind vector. The strength _'0 = (60 m s-1)-2(10 d) -1 is

chosen to damp a 60 m s-1 jet in 10 days. This drag is a crude ad hoc representation of

missing gravity wave drag in the middle atmosphere. It is intended primarily to reduce the

strength of the polar night jet in the winter stratosphere in the interest of computational

stability. This drag formulation does not produce realistic simulations of the stratospheric
climate.

We find that our simulation of stationary planetary waves improves significantly when the

topographic elevation data used by the model is first filtered to eliminate high spatial

frequencies. This is accomplished using a 12-th order Coiflet filter. Coiflets are nearly

symmetrical orthogonal wavelets with compact support and exact reconstruction. We filter

by simply removing the highest frequency (octave) of the Coiflet transform of the topography

and reconstructing. The compact support of the Coiflet filter reduces the ringing that

plagues higher-order filtering techniques.

Penetrative convection originating in the boundary layer is parameterized using the Relaxed

Arakawa-Schubert (RAS) scheme (Moorthi and Suarez, 1992), which is a simple and effi-

cient implementation of the Arakawa-Schubert scheme. The version described in Moorthi

and Suarez, RAS-1, is the standard parameterization used at Goddard. It has also been

tested at NCEP, NCAR, and COLA, and has performed particularly well in simulating the

atmospheric response to tropical SST anomalies -- a crucial aspect of the coupled predic-

tion problem. We have recently updated it by including a more detailed condensate budget

3



in the updraft. This version,whichwereferto asRAS1.5,is theoneusedin the NSIPP1
AGCM.

Cloudsare obtained from an empirically-based, diagnostic scheme in which the cloud cover

at each grid point depends directly on the results of the large-scale condensation and con-

vection parameterizations. The scheme defines both large-scale and convective cloudiness.

Large-scale cloudiness is determined in two steps. First, an intial cloud fraction is estimated

using a simple diagnostic scheme based solely on relative humidity (RH). This scheme is

similar to that of Slingo (1987). A high threshhold RH of 95% is used. Even with this high

threshhold value, excessive cloudiness results over tropical and subtropical oceans. Thus,

a second "destruction" step is invoked. We simply use the magnitude of subsidence dry-

ing produced by RAS to destroy a fraction of the large-scale clouds produced by the RH

diagnostic,

where C_s is the initial estimate from the RH-diagnostic, Deny is the 3-dimensional distri-
bution of net convective drying from RAS, and Do is a tunable parameter, which we choose

by examining the global radiation budget. In the simulations discussed here, this parameter

has a value of 7 g kg-1 day-1.

The land surface model (LSM) is the Mosaic LSM of Koster and Suarez (1992, 1996),

The core of the LSM is a standard soil-vegetation-atmosphere-tranfer (SVAT) model. The

most distinctive feature of Mosaic is that it subdivides each AGCM grid square into sub-

regions, or tiles, of relatively homogeneous vegetation type and then calculates separate

one-dimensional energy and water balances over each tile, with distinct stomatal control

over transpiration rates. This model has performed well in tests against observations (Chen

et al. 1997, Wood et al. 1998), and has been used in studies of land-atmosphere interactions

(Koster et al., 2000, and references therein).

3 Description of the integration

All results presented here are from a single AMIP-style run begun on 1 January 1979 0Z

and extending to 1 December 1999 OZ. The first eleven months of the run were discarded

as a "spin up" period. We thus analyzed twenty years (December 1979 - November 1999)

of integration.

For this run, the model was integrated at a resolution of 2 ° latitude by 2.5 ° longitude, using

34 sigma layers (Table 1).

Sea-surface temperatures (SST) and sea-ice fractions were specified based on the monthly

Reynolds O-I dataset (Reynolds and Smith 1994). The land surface was fully interactive

and consists of some 13000 tiles distributed over the atmospheric grid boxes that contain

a non-zero land fraction. The tiles represent six different vegetation types, as well as land

ice, bare soil, desert, and lakes. Lakes are treated as a freely evaporating surface (i.e., no

surface, only aerodynamic, resistance) with a heat capacity equivalent to 2 meters of water.



Table 1: Sigma surfaces separating the 34 layers of the model.
L a L a L a L a L a

1 0.000 2 0.005 3 0.010 4 0.015 5 0.025
6 0.050 7 0.075 8 0.100 9 0.125 10 0.150
11 0.175 12 0.200 13 0.225 14 0.275 15 0.325
16 0.375 17 0.425 18 0.500 19 0.625 20 0.700
21 0.750 22 0.775 23 0.800 24 0.825 25 0.850
26 0.865 27 0.880 28 0.895 29 0.910 30 0.925

31 0.940 32 0.955 33 0.970 34 0.985 35 1.000

One peculiarity of this run is that, to avoid running with a sea-ice model, we have spec-

ified both sea ice fractions and temperatures. The former vary interannual, but sea-ice

temperatures repeat the same seasonal cycle each year.

4 Validation data sets

For the upper air fields and their statistics, we compare with the NCEP/NCAR Reanalysis

(Kalnay et al. 1994) averaged for the same period as the model simulation. For the

moisture field and various physics diagnostics we compare with various satellite and in

situ measurements described below.

Precipitation is compared with the combined satellite,gauge, and model estimates derived

by Xie and Arkin (1997). These data are available for the entire period of the simulation

from ftp: / / ftp.ncep.noaa.gov /pub /precip /cmap /monthly/.

Estimates of total precipitable water (TPW) are those generated by Wentz (1992) from the

Special Sensor Microwave Imager (SSM/I) measurements. The radiative transfer algorithm

uses three channels of microwave measurements (22V, 37V, 37H) and a scheme that accounts

for absorption and emission in the atmosphere and uses a surface emissivity value over

oceans appropriate for a wind-roughened sea surface. The scheme does not account for

scattering by raindrops or by frozen hydrometers and is, therefore inaccurate for high rain

rates. No data is produced over land or sea ice, because of the complexity of the surface

emissivity.

To validate the top of the atmosphere radiation budget, we compare with the Earth Ra-

diation Budget Experiment (ERBE) data collected by the ERBS, NOAA 9 and NOAA 10

satellites between November 1984 and February 1990. More information on ERBE may be

obtained at (http://asd-www.larc.nasa.gov/erbe/ASDerbe.html). We limit our comparison

to the 5-year period from 1985 through 1989.

Surface fluxes are compared with the first 10 years of the ECMWF reanalysis (Gibson et

al., 1996).



5 Organization and calculations

Unless otherwise noted, quantities presented in this report are averaged over the 20 years

of the integration. We will concentrate on seasonal means. Instantaneous values of the

simulated upper air data were saved four times daily at 0Z,6Z,12Z, and 18Z. Surface and

top-of-atmosphere (TOA) fluxes, precipitation, and cloudiness were accumulated at each

time step and saved once daily.

Results axe presented as zonal means and global maps of climatological means and sub-

monthly variance/covariance statistics. For selected quantities we also show the zonal

mean bias (departures from NCEP/NCAR reanalysis), and/or line plots of zonal means

at selected pressure levels or of vertical means. The zonal means are computed at the fol-

lowing pressure levels (1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30,

qnd 10 mb). While results are presented up to 10 mb, the model was not tuned to pro-

duce a very realistic stratosphere. In fact, the current values of Rayleigh friction produce

a rather strong damping on the stratosphere, resulting in unrealistically weak high latitude
westerlies and covariance statistics above about 50 rob.

The variance/covariance statistics are divided into "transient" and "stationary" compo-

nents. The "transient" statistics are computed from 6 hourly deviations from monthly

means of each year and each calendar month. Products are then taken and averaged for

each season and for the twenty years of the analysis. The "stationary" statistics are com-

puted from zonal departures of monthly means, these are then averaged for each season

and for the twenty years of the analysis. We will use overbars to denote a calendar monthly
mean, so that u _ = u - _ is the monthly deviation of u, and square brackets to denote

a zonal mean, so that u* = u -_ is the zonal departure of u. Then the mean quadratic

quantities are defined as:

TRANSIENT(u,v) = {u-_vl}, STATIONARY(u,v) = {[_-'9-'1},

where the braces represent an average over the three months of each season and all years.

For all squared statistics, other than kinetic energy, we plot the square root, which is taken

after all averaging.

Section 6 discusses the climatological means and bias of upper air fields. Section 7 discusses

sub-monthly quadratic statistics, and Section 8 selected physics quantities.

6 Means of Upper Air Fields

The model produces a very good simulation of the general circulation of the troposphere,

including the zonally asymmetric flow and stationary eddy patterns. In the following dis-

cussion, we emphasize deficiencies that remain in the simulation.

The model simulation of the seasonal mean zonal mean winds is generally quite good.

Notable deficiencies include, weak high latitude stratospheric winter westerlies, an easterly

bias in the upper troposphere/lower stratosphere of the tropics, and a westerly bias in the



middle latitudes of the SouthernHemisphere.At 200mb, the modelproducesa westerly
nodein the easterntropical Pacificthat is too strong.During JJA, the 200mb Asian and
North Pacificjets are too weak. There is a tendencyfor a westerlybias at 200mb over
the tropical westernhemisphereduring DJF and MAM. The model fails to capture the
separationof the 200mb AfricanandEast Asianjets duringMAM. At 850mb, the model
generatestoo strongtropical easterliesovertheeasternPacific,andtoo strongwesterliesin
the SouthernHemispheremiddle latitudesandthe Asiansummermonsoonregion.

Theseasonalcycleof the HadleyCell is quite realistic, though the maximum rising motion

during JJA occurs substantially lower in the atmosphere (below 500 rob) than the estimates

from the NCEP/NCAR reanalysis show (400 mb). The model has a consistent cold bias

throughout most of the stratosphere, the Southern Hemisphere high latitude upper tropo-

sphere, and the tropical upper troposphere. A substantial warm bias (greater than 8 degrees

C) occurs during the winter in the stratosphere of the southern high latitudes. During all

seasons the tropical and subtropical troposphere below 800 mb is too dry (maximum bias

near 925mb), while between 700 mb and 500 mb the tropics are too wet. The moisture

bias is reflected in the relative humidity (RH) bias, though the latter also show that the

boundary layer relative humidity is too high, while away from the polar regions the upper

tropospheric relative humidity is too low.

The North Pacific and North Atlantic surface highs tend to be too strong, especially during

JJA. The North American upper tropospheric west coast ridge is too strong during DJF.

The east Asian/west Pacific trough is too weak (and has a noticeable hump) during DJF,

and it does not extend far enough into the eastern Pacific during MAM.

The model shows excessive noise over mountains in the 500 mb omega fields. Compared

to the NCEP reanalysis, there is insufficient rising motion over the tropical eastern Pacific

in the region of the ITCZ. The eddy stream function at 300 mb shows tropical/subtropical

stationary waves that are too weak in the eastern hemisphere, while they are too strong in

the western hemisphere during all seasons. The seasonal evolution of the 200 mb velocity

potential is quite good.

7 Sub-Monthly Quadratics of Upper Air Fields

The model produces good tropospheric transient and stationary zonal and meridonal wind

variances. However, the transient variances in both wind components (especially v) tend to

be somewhat weak in the Northern Hemisphere. This leads to a substantial underestimate

of the transient kinetic energy in the Northern Hemisphere troposphere during all seasons.

The stationary zonal wind variance is too strong in the upper tropospheric tropics. The

wind variances are much weaker than observed in the high latitudes of the stratosphere

during winter.

There are large differences in the variance of the omega field, with the model showing con-

siderably larger variance than the NCEP/NCAR reanalysis in the tropics and extratropics.

It should be noted that the quality of the reanaIysis are suspect for this field. The model

produces very good geopotential height variances in the troposphere. Similar to the wind
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variances;however,the heightvariancesareweakerthan observedduring thecold seasons
in the highlatitudesof the stratosphere.This isespeciallysofor thestationarycomponent
during DJF in the NorthernHemisphereand during SON in the SouthernHemisphere.
At 200mb, the seasonalcycleof the heightvarianceis quite good,thoughthe varianceis
somewhatweakerthan observedin the NorthernHemispheremiddleand highlatitudes.

The modelproducesexcellentmeridionalfluxesof zonalmomentum.Exceptionsaxethe
too strongstationary fluxesbetween200 mb and 100 mb during JJA, and a tendency
to overestimatethe southwardtransientfluxes in the SouthernHemisphere.The model
producesreasonableheatfluxesin thetroposphere,thoughtransientsouthwardfluxesin the
SouthernHemispherearesystematicallyhigherthan in the reanalysis.In the stratosphere,
thestationarymeridionalheatflux ismuchtooweakat high latitudesduringDJF, whilethe
transientcomponentis too strong.The modelgeneratesveryrealisticmeridionalmoisture
fluxes.

8 Surface and TOA Fluxes

The model's global precipitation distribution is much improved from that produced by
earlier versions. In particular, its tendency to produce unrealistic double ITCZs in the

central and eastern Pacific has been greatly lessened. A strong vestige of the problem,
however, remains in the MAM season. One of the more intractable problems with the

precipitation distribution is a "gap" in the eastern Pacific ITCZ and an associated "bull's

eye" in precipitation over Central America. This problem is apparent in all four seasons of
the simulation.

The simulated precipitable water (vapor only) agrees quite well with the satellite estimate

(SSM/I). As might be expected, however, it shows some of the same unrealistic features as

the precipitation fields.

The zonal mean total radiation budget at the top of the atmosphere is simulated well. The

most obvious deficiency is the excessive outgoing longwave radiation at almost all latitudes

and all seasons. This results in a systematic "cold" bias in the net radiation, which is

otherwise extremely well simulated. The "cloud radiative forcings" (CRF) highlight better

the model's performance. In the OLR-CRF, the model does surprisingly well in the tropics--

a result of our improved distributions of convective activity. In the middle latitudes, the

model consistently underestimated the OLR-CRF, implying too little, or too low cloudiness

in these regions. The solar CRF is extremely good, the main problem being too weak

forcing in middle latitudes of the southern hemisphere during MAM. Aside from this, little
differentiates it from the ERBE data.

The global distributions of CRF show clearly that some of the agreement in the zonal mean

results from a compensation of errors along latitude circles, but they also show that much of

the agreement is due to the model's improved distribution of tropical (convective) cloudiness

and of the marine stratus and stratocumulus regimes. The latter is best seen in the solar
CRF distributions.

Because of its importance to the ENSO problem, we have devoted considerable attention to



the simulationof tropical surface stresses, particularly the seasonal cycle in the equatorial

Pacific. As may be seen from the global distributions shown, both the zonal and meridional

stress compare quite well with the ECMWF reanalysis. In fact, even the more difficult and

oceanographically important curl of the wind stress is very close to the reanalysis.

The same cannot be said of the sensible and latent heat fluxes, both of which the model

seems to overestimate very significantly, at least over oceans.

9 Summary

The atlas presents a very good simulation of the mean seasonal cycle of the tropospheric

general circulation. The model is shown to have very good skill in simulating the horizontal

and vertical distribution of both mean fields and variance/covariance statistics.

The results also identify a several deficiencies. Some of these, like the problems in the

eastern Pacific ITCZ, may require increased horizontal resolution. Others, however, are

things that we feel can clearly be improved within the current framework.

Nevertheless, we feel this is an acceptable model for NSIPP's purposes and have frozen it

in the form presented here. A number of other experiments have already been conducted

with it and many more will follow. These experiments address the model's sensitivity to

sea-surface temperatures, its teleconnection patterns and modes of natural variability, the

nature of its land-atmosphere interactions, and its performance in coupled integrations. In

all of these areas, the model appears to be performing quite well, and results will be reported

in the near future.
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Figure 19: Zonal wind at 200 mb for DJF-- Top: Model, Bottom: Reanalysis. Contour

interval: 5 m s -1. Easterlies indicated by dark shading, light shading indicates westerlies
in excess of 40 m s-1.
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Figure 20: Zonal wind at 200 mb for JJA-- Top: Model, Bottom: Reanalysis. Contour

interval: 5 m s -1. Easterlies indicated by dark shading, light shading indicates westerlies
in excess of 40 m s -1.

35



MAM U200

90N
Model

60N

30N

EQ

30S

60S

90S

90N
Reanalysis

60N

30N

EQ

30S

60S

90S I I i

0 60E 120E 180 120W 60W 0

Figure 21: Zonal wind at 200 mb for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 5 m s -1. Easterlies indicated by dark shading, light shading indicates westerlies
in excess of 40 m s -1.
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Figure 22: Zonal wind at 200 mb for SON-- Top: Model, Bottom: Reanalysis. Contour
interval: 5 m s -1. Easterlies indicated by dark shading, light shading indicates westerlies

in excess of 40 m s-1.
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Figure 23: Zonal wind at 850 mb for DJF-- Top: Model, Bottom: Reanalysis. Contour
interval: 3 m s -1. Easterlies are shaded.
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Figure 24: Zonal wind at 850 mb for JJA-- Top: Model, Bottom: Reanalysis. Contour
interval: 3 m s -1. Easterlies are shaded.

39



MAM Usso

90N
Model

60N

30N

EQ

30S

60S ........

90S

90N
Reanalysis

60N

30N

EQ

30S

60S

90S
0 60E 120E 180 120W 60W 0

Figure 25: Zonal wind at 850 mb for MAM-- Top: Model, Bottom: Reanalysis. Contour
interval: 3 m s -1. Easterlies axe shaded.
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Figure 26: Zonal wind at 850 mb for SON-- Top: Model, Bottom: Reanalysis. Contour
interval: 3 m s -1. Easterlies are shaded.
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Figure 27: Sea-level pressure for DJF-- Top: Model, Bottom: Reanalysis. Contour interval:

4 mb. Shading indicates pressures in excess of 1000 mb.
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Figure 28: Sea-level pressure for JJA-- Top: Model, Bottom: Reanalysis. Contour interval:

4 mb. Shading indicates pressures in excess of 1000 mb.
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Figure 29: Sea-level pressure for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 4 mb. Shading indicates pressures in excess of 1000 mb.
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Figure 30: Sea-level pressure for SON-- Top: Model, Bottom: Reanalysis. Contour interval:

4 mb. Shading indicates pressures in excess of 1000 mb.
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Figure 31: Eddy geopotential height at 300 mb for DJF-- Top: Model, Bottom: Reanalysis.

Contour interval: 40 m. Shading indicates negative values.

46



JJA Z*3oo

90N

60N

30N

EQ

30S

60S

90S

Model

90N
Reanalysis

60N

30N

EQ

30S

60S

90S , , , ,
0 60E 120E 180 120W 60W 0

Figure 32: Eddy geopotential height at 300 mb for JJA-- Top: Model, Bottom: Reanalysis.

Contour interval: 40 m. Shading indicates negative values.
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Figure 33: Eddy geopotential height at 300 mb for MAM-- Top: Model, Bottom: Reanal-

ysis. Contour interval: 40 m. Shading indicates negative values.
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Figure 34: Eddy geopotential height at 300 mb for SON-- Top: Model, Bottom: Reanalysis.

Contour interval: 40 m. Shading indicates negative values.
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Figure 35: Omega at 500 mb (mb d-I) for DJF-- Top: Model, Bottom: Reanalysis.

Contour interval: 4 mb d -1. Shading indicates rising motion.
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Figure 36: Omega at 500 mb (mb d -1) for JJA-- Top: Model, Bottom: Reanalysis. Contour

interval: 4 mb d -1. Shading indicates rising motion.
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Figure 37: Omega at 500 mb (rob d -i) for MAM-- Top: Model, Bottom: Reanalysis.

Contour interval: 4 mb d -1. Shading indicates rising motion.
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Figure 38: Omega at 500 mb (mb d -1) for SON-- Top: Model, Bottom: Reanalysis.
Contour interval: 4 mb d -1. Shading indicates rising motion.
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Figure 39: Eddy stream function at 200 mb for DJF-- Top: Model, Bottom: Reanalysis.

Contour interval: 5 × 10 6 m 2 s -1. Shading indicates negative values.
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Figure 40: Eddy stream function at 200 mb for JJA-- Top: Model, Bottom: Reanalysis.

Contour interval: 5 ×10 6 m 2 s-1. Shading indicates negative values.
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Figure 41: Eddy stream function at 200 mb for MAM-- Top: Model, Bottom: Reanalysis.

Contour interval: 5 x 106 m 2 s -1. Shading indicates negative values.
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Figure 42: Eddy stream function at 200 mb for SON-- Top: Model, Bottom: Reanalysis.

Contour interval: 5 x 106 m 2 s -1. Shading indicates negative values.
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Figure 43: Velocity potential at 200 mb for DJF-- Top: Model, Bottom: Reanalysis.

Contour interval: 5 x 106 m S s -1. Shading indicates negative values.
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Figure 44: Velocity potential at 200 mb for JJA-- Top: Model, Bottom: Reanalysis. Con-

tour interval: 5 x 106 m 2 s -1. Shading indicates negative values.
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Figure 45: Velocity potential at 200 mb for MAM-- Top: Model, Bottom: Reanalysis.

Contour interval: 5 x 106 m 2 s -1. Shading indicates negative values.
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Figure 46: Velocity potential at 200 mb for SON-- Top: Model, Bottom: Reanalysis.

Contour interval: 5 xl06 m 2 s -1. Shading indicates negative values.
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GLOBAL MAPSOF SELECTED STATISTICS

(DJF, MAM, JJA, SON)
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Figure 98: _[_7_] at 200rob for DJF-- Top: Model, Bottom: Reanalysis. Contour interval:

2 m s -1. Shading indicates values exceeding 6 m s -1.
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Figure 99: _ at 200mb for JJA-- Top: Model, Bottom: Reanalysis. Contour interval:

2 m s-1. Shading indicates values exceeding 6 m s-1.
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Figure 100: _/[(u') 2] at 200mb for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 m s -1. Shading indicates values exceeding 6 m s -1.
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Figure 101: _/[(u') _] at 200mb for SON-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 m s-1. Shading indicates values exceeding 6 m s -1.
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Figure 102: _ at 200rob for DJF-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 m s -1. Shading indicates values exceeding 6 m s -1.
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Figure 103: y_v') 2] at 200mb for JJA-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 m s -1. Shading indicates values exceeding 6 m s -1.
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Figure 104: _/[(v') 2] at 200mb for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 m s -1. Shading indicates values exceeding 6 m s -1.
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Figure 105: y/_v') 2] at 200rob for SON-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 m s -1. Shading indicates values exceeding 6 m s -1.
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Figure 106: ½[(u') 2 + (v') 2] at 200rob for DJF-- Top: Model, Bottom: Reanalysis. Contour

interval: 30 m 2 s -2. Shading indicates values exceeding 120 m 2 s -2.
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Figure 107: ½[(u') 2 + (v') 2] at 200mb for JJA-- Top: Model, Bottom: Reanalysis. Contour
interval: 30 m 2 s-2. Shading indicates values exceeding 120 m 2 s -2.
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1 t2 _t2Figure 108: _[(u ) + ( ) ] at 200mb for MAM-- Top: Model, Bottom: Reanalysis. Contour
interval: 30 m 2 s-2. Shading indicates values exceeding 120 m 2 s-2.
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Figure 109:1[(u')2 ÷ (v') 2] at 200mb for SON-- Top: Model, Bottom: Reanalysis. Contour

interval: 30 m 2 s -2. Shading indicates values exceeding 120 m 2 s -2.
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Figure 110: _/[(w') 2] at 500mb for DJF-- Top: Model, Bottom: Reanalysis. Contour

interval: 20 mb d -1. Shading indicates values exceeding 120 mb d -1.
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Figure 111: _/[(w') 2] at 500mb for JJA-- Top: Model, Bottom: Reanalysis. Contour

interval: 20 mb d -1. Shading indicates values exceeding 120 mb d -1.
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Figure 112: ¢[(w') 2] at 500rob for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 20 mb d -1. Shading indicates values exceeding 120 mb d -1.
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Figure 113: 9/[(w')2] at 500mb for SON-- Top: Model, Bottom: Reanalysis. Contour

interval: 20 mb d -1. Shading indicates values exceeding 120 mb d -1.
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Figure 114: _/[(T') 2] at 850mp (K) for DJF-- Top: Model, Bottom: Reanalysis. Contour

interval: 1 K. Shading indicates values exceeding 4 K.
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Figure 115: _/_(T') 2] at 850mp (K) for JJA-- Top: Model, Bottom: Reanalysis. Contour

interval: 1 K. Shading indicates values exceeding 4 K.
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Figure 116: _[(T') 2] at 850mp (K) for MAM-- Top: Model, Bottom: Reanalysis. Contour
interval: 1 K. Shading indicates values exceeding 4 K.
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Figure 117: V/_(T') 2] at 850rap (K) for SON-- Top: Model, Bottom: Reanalysis. Contour

interval: 1 K. Shading indicates values exceeding 4 K.
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Figure 118: _/[(Z') 2] at 200 mb (m) for DJF-- Top: Model, Bottom: Reanalysis. Contour

interval: 20 m. Shading indicates values exceeding 100 m.
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Figure 119: _/[(Z') 2] at 200 mb (m) for JJA-- Top: Model, Bottom: Reanalysis. Contour

interval: 20 m. Shading indicates values exceeding 100 m.
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Figure 120: ¢[(Z') 2] at 200 mb (m) for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 20 m. Shading indicates values exceeding 100 m.
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Figure 121: _/[(Z_) 2] at 200 mb (m) for SON-- Top: Model, Bottom: Reanalysis. Contour
interval: 20 m. Shading indicates values exceeding 100 m.
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Figure 122: .V/[(XO2] at 200mb for DJF-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 × 106 m 2 s-1. Shading indicates values exceeding 8 × 106 m 2 s -1.
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Figure 123: VI[(X') 2] at 200mb for JJA-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 x 106 m 2 s-1. Shading indicates values exceeding 8 x 106 m 2 s -1.
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Figure 124: _ at 200mb for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 xl06 m 2 s -1. Shading indicates values exceeding 8 ×106 m 2 s -1.
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Figure 125: V/_X_) 2] at 200rob for SON-- Top: Model, Bottom: Reanalysis. Contour

interval: 2 x 106 m 2 s -1. Shading indicates values exceeding 8 x 106 m 2 s -1.
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Figure 126: [u-%Tv_] at 200 mb for DJF-- Top: Model, Bottom: Reanalysis. Contour interval:

20 m s s -2. Shading indicates negative values
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Figure 127: [u'v'] at 200 mb for JJA-- Top: Model, Bottom: Reanalysis. Contour interval:

20 m 2 s-2. Shading indicates negative values
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Figure 128: [u_-rV-_at 200 mb for MAM-- Top: Model, Bottom: Reanalysis. Contour interval:

20 m 2 s -2. Shading indicates negative values
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Figure 129: [u--_Tv'] at 200 mb for SON-- Top: Model, Bottom: Reanalysis. Contour interval:

20 m 2 s -2. Shading indicates negative values
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Figure 130: [v'T _] at 850 mb for DJF-- Top: Model, Bottom: Reanalysis. Contour interval:

5 m s -1 K. Shading indicates negative values

148



JJA [_ 850

90N
Model

60N

30N

EQ

30S

60S

90S

90N

60N

30N

EQ

30S

60S

90S

Reanalysis

| |

0 60E 120E 180 120W 60W 0

Figure 131: [v'T'] at 850 mb for JJA-- Top: Model, Bottom: Reanalysis. Contour interval:

5 m s -1 K. Shading indicates negative values
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Figure 132: [v--_TT'] at 850 mb for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 5 m s -1 K. Shading indicates negative values
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Figure 133: [v-'rT_T_]at 850 mb for SON-- Top: Model, Bottom: Reanalysis. Contour interval:

5 m s -1 K. Shading indicates negative values
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Figure 134: -[w--}-_T'] at 850 mb for DJF-- Top: Model, Bottom: Reanalysis. Contour interval:

50 mb d -1 K. Shading indicates downward heat transport
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Figure 135: -[w_T I] at 850 mb for JJA-- Top: Model, Bottom: Reanalysis. Contour interval:

50 mb d -1 K. Shading indicates downward heat transport
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Figure 136: -[w-'r_T_] at 850 mb for MAM-- Top: Model, Bottom: Reanalysis. Contour

interval: 50 mb d -1 K. Shading indicates downward heat transport
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Figure 137: -[w-7_T'] at 850 mb for SON-- Top: Model, Bottom: Reanalysis. Contour

interval: 50 mb d -1 K. Shading indicates downward heat transport
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Figure 138: [v-_ at 850 mb (ms -1 g kg -1) for DJF-- Top: Model, Bottom: Reanalysis.

Contour interval: 2 m s -1 g kg -1. Shading indicates negative values
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Figure 139: [v-_] at 850 mb (ms -1 g kg -1) for JJA-- Top: Model, Bottom: Reanalysis.

Contour interval: 2 m s-1 g kg -1. Shading indicates negative values
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Figure 140: [v-_] at 850 mb (m s -1 g kg -1) for MAM-- Top: Model, Bottom: Reanalysis.

Contour interval: 2 m s -1 g kg -1. Shading indicates negative values
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Figure 141: [v--_] at 850 mb (m S-1 g kg -1) for SON-- Top: Model, Bottom: Reanalysis.

Contour interval: 2 m s -1 g kg -1. Shading indicates negative values
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GLOBAL MAPS OF PHYSICS DIAGNOSTICS

(DJF, MAM, JJA, SON)
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